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Summary

Premature ovarian failure (POF) is a defect of ovarian
development and is characterized by primary or sec-
ondary amenorrhea, with elevated levels of serum go-
nadotropins, or by early menopause. The disorder has
been attributed to various causes, including rearrange-
ments of a large “critical region” in the long arm of the
X chromosome. Here we report identification, in a fam-
ily with POF, of a gene that is disrupted by a breakpoint.
The gene is the human homologue of the Drosophila
melanogaster diaphanous gene; mutated alleles of this
gene affect spermatogenesis or oogenesis and lead to
sterility. The protein (DIA) encoded by the human gene
(DIA) is the first human member of the growing FH1/
FH2 protein family. Members of this protein family af-
fect cytokinesis and other actin-mediated morphogenetic
processes that are required in early steps of development.
We propose that the human DIA gene is one of the genes
responsible for POF and that it affects the cell divisions
that lead to ovarian follicle formation.

Introduction

Disorders of ovulation are very common in humans, and
they account for ~15% of all infertility problems. The
terms “premature ovarian failure” (POF [MIM
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311360]), “hypergonadotropic ovarian failure,” and
“hypergonadotropic ovarian dysgenesis” have been used
to indicate a group of disorders in which amenorrhea is
associated with elevated levels of serum gonadotropins
(Coulam 1982); that occur long before the age of 40
years. The terms are descriptive and do not indicate
causal mechanisms, most of which are unknown. The
relative frequency of cases that are associated with ab-
normalities of the sex chromosomes has suggested a ge-
netic component (Therman et al. 1990). Complete ab-
sence of one of the two X chromosomes (Turner
syndrome) and a variety of X-chromosome rearrange-
ments have been observed in patients affected with POE.
Familial cases with a normal karyotype have also been
described. In Finnish families, a mutation in the FSH-
receptor gene was described; until now, this is the only
gene that has been shown to be responsible for POF
(Aittomaki et al. 1995).

Cytogenetic studies of X-chromosome aberrations
have suggested that it is mainly the long arm of the X
chromosome that is involved in defects of ovulation.
These studies have defined a large region, from Xq13 to
X(q26, as the “critical region” for normal ovarian func-
tion (Therman et al. 1990). We have reported fine map-
ping, to a 15-Mb YAC contig, of balanced X-autosome
translocations that are associated with POF (Sala et al.
1997). Our data and the few comparable data from the
literature (Powell et al. 1994; van der Maarel et al. 19935)
have confirmed that the great majority of the break-
points are spread along a large chromosomal segment
that corresponds to the whole Xg21 region and that
flanks regions in Xq13 and Xq22, from DXS233 to
DXS1171. The few remaining breakpoints have been
mapped to distal Xq (authors’ unpublished data). On
the basis of the extension of the region, we have ten-
tatively excluded the possibility that a single gene is in-
volved, and we have suggested that several genes for
ovary development and/or oogenesis may be present
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along the critical region and that they may be interrupted
by the balanced translocations.

Evidence for the presence of the first such gene came
from sequence comparison between human expressed
sequence tags (ESTs) and genes that cause mutant phe-
notypes in Drosophila melanogaster (Banfi et al. 1996).
The DRES2S clone, a human EST that shows significant
homology with a Drosophila gene, diaphanous (dia)
(Castrillon and Wasserman 1994), was mapped, by
FISH, to Xq22. Mutant alleles of dia are responsible for
sterility in male and female fruit flies. The localization
of the human ¢DNA and the peculiar phenotype deter-
mined by mutations in the Drosophila dia gene sug-
gested that the human homologue of dia could be in-
volved in human ovary development. We now report
characterization of the human homologue of the Dro-
sophila dia gene, and we demonstrate that this gene is
interrupted by a breakpoint associated with a familial
case of POF (patient BC, reported in Philippe et al.
[1993] and Sala et al. [1997]). We propose that DIA is
one of the genes that are essential for normal human
ovarian development and function.

Material and Methods

cDNA Isolation

The cDNAs were obtained either from the Image
Consortium  (http://www-bio.llhl.gov/bbrp/image/im-
age.html) or by hybridization screening of human ovary,
testis, and teratocarcinoma and mouse brain cDNA li-
braries (Stratagene, Clontech).

Isolation of Genomic Clones

The CEPH MegaYAC and the P1 artificial chromo-
some (PAC) library were screened, at the YAC Screening
Centre (YSC) (http://www.spr.it/iger), by PCR, with pri-
mer pairs 12C-f/12C-r and 156-f/156-r (table 1). Cos-
mids, from the Lawrence Livermore chromosome
X-specific cosmid library, were isolated by hybridiza-
tion, with clone DRES25 as probe.

Nucleotide Sequencing

¢DNA and cosmid clones were sequenced, by use of
vector and internal primers, as described elsewhere
(Bione et al. 1994).

FISH Mapping

FISH was performed on metaphase preparations, with
YAC and PAC DNA, as described elsewhere (Rossi et
al. 1994). DNA was labeled by nick-translation, with
biotin-16 dUTP (Boehringer Mannheim).
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Table 1

Sequence of PCR Primers

Primer Sequence

5'-GATAATCTTCTAGAAGCCCTACAATCAG-
D-f2 3

156-r S'-“TATTACAAATGCACACTACTTCATCC-3'

12C-r 5'-GTCATGTTGTACCATCACCCAATCCTG-3

D-f1 S-TTCTTTGGTGATCTCAACAACTTC-3'
5'-GTGGTAAATCATCCCTGTGCAACAAGGG-

12C-f 3

156-f 5S-TCTCATCTAAGTGATTCCTGATGC-3

1A3 S TAATTGCCTAGAATCCCTCAGGGTTTC-3'

D-r7 S'-TCTGCTTCATTCCATAAGGTAGATTAAG-3
mD-1 5-CTTCTGGTTGGAAACTACATGAACTA-3
mD-4 5'-ACATATTGCTGTGCATGGTGGACAG-3'
Hprt-f 5-CCTGCTGGATTACATTAAAGCAC-3'

Hprt-r 5'-GTCAAGGGCATATCCAACAACAAAC-3

Reverse Transcriptase—PCR (RT-PCR)

Total RNA from various human tissues was either
purchased from Clontech or extracted from lympho-
blastoid cell lines or mouse tissues that were dissected
at the indicated developmental time. RNA was extracted
from Mouse tissues by means of the RNeasy Mini Kit
(Qiagen). Reverse transcription of 1 ug of total RNA
was performed as described elsewhere (Bione et al.
1994). PCR amplification was performed in 50-ul re-
actions for 40 cycles, unless otherwise indicated, in 0.2
mM dNTPs, 0.5 uM primer, 1.5 mM Mg**, and 1.25
U Taq polymerase (Promega). PCR was performed for
30 s at 94°C, 30 s at 58°C-64°C, and 40 s at 72°C, with
7 min of final elongation. “Hot start” was performed
for 5 min at 94°C.

Northern Blot Analysis

Human multiple-tissue northern blots (Clontech) were
hybridized at 65°C, as described elsewhere (Bione et al.
1993). The exon 156-specific probe was a 429-bp frag-
ment, obtained by Rsal digestion of the PCR product
Df-2/T7, amplified from DRES25. The exon
12C-specific probe was a 260-bp fragment, obtained by
Hinfl digestion of the PCR product DF-2, amplified from
the cDNA HT12C.

Pulse-Field Gel Electrophoresis (PFGE) Analysis

DNA of the YACs 933D12 and 796E9 was digested
by the restriction enzymes indicated above and was frac-
tionated by PFGE, at 170 V, in 1.5% agarose gels, for
24 h at 14°C. Pulse intervals were 60-150 s. The gels
were blotted and hybridized by use of the probes indi-
cated above.
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Figure 1 a, YAC contig in the region of the BC breakpoint. STSs
and probes are indicated by dots. Positions of the breakpoints in POF
patients are indicated by rectangles above the map. b, Rare cutter-
restriction map of the 3’ end of the DIA gene. Exons are indicated by
bars. YACs 933D12 and 796E9, PACs, and cosmids are shown below
the map. Rare cutter-restriction enzymes are indicated by the letters
“M?” (Mlul), “S” (Sacll), and “N* (Nrul).

Results

The Human DIA Gene Is Localized in Distal Xq21 and
Is Disrupted by the Breakpoint of an X;12
Translocation, Which Causes POF

The DRES25 EST (Banfi et al. 1996) was sequenced,
and it was shown to contain an open reading frame
(ORF) of 1,001 bp. The 361 amino acids encoded by
the ORF showed high similarity (41.5% identity, 64.8%
similarity) with the C-terminal portion of the product
of the Drosophila dia gene (amino acids 714-1091).

By means of hybridization to the YACs of the POF
critical region (Sala et al. 1997), the DRES25 clone was
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Figure 2 FISH on metaphase preparations of patient BC. The
probe used was PAC dJ263K1. Normal and derivative chromosomes
are indicated by arrows. Chromosomes were stained with 4,6-diam-
idino-2-phenylindole.

mapped to the distal portion of the contig, in Xq21.3/
Xq22. Representative YACs of the region are shown in
figure 1a. The 500 nt at the 5’ of the DRES25 ¢cDNA
(DRES25-5') hybridized to YACs 933D12, 89H10, and
796E9, whereas the rest of the cDNA (DRES25-3') hy-
bridized to 796E9 and to the more telomeric YACs,
637G8 and 746B3.

The breakpoint of the balanced X;12 translocation
(46,X,t[X;12][q21;p1.3]) in the family of patient BC was
localized, by FISH, to the same genomic region (Sala et
al. 1997). Patient BC had secondary amenorrhea, with
no other associated features, at the age of 17 years. Her
mother carried the same chromosomal rearrangement
and was diagnosed with premature menopause at the
age of 32 years. At diagnosis, both mother and daughter
had high gonadotropin levels and inactivation of the
normal X chromosome (Philippe et al. 1993). The break-
point was mapped, by FISH, to the rearranged YAC
2C11 (Sala et al. 1997) and, subsequently, to YAC
796E9 (data not shown).

To better define the breakpoint, a rare cutter-restric-
tion map of the two YACs, 933D12 and 796E9, was
constructed, with DRES25, newly isolated cDNAs, and
sequence-tagged sites (STSs) of the region as probes. Part
of the map is shown in figure 16. Cosmids and PACs
were isolated and are also shown in figure 15. Cosmids
sequenced from ¢cDNA internal primers demonstrated
that the whole DRES25 sequence was contained in eight
exons that were localized to restriction fragments of the
YAC map (fig. 1b). The last intron of the gene was
cloned, in overlapping PACs, and its length resulted of
~200 kb. PAC clones dJ317K17 and dJ263K1 were used
in FISH; clone dJ263K1 spanned the BC breakpoint (fig.
2), which was therefore mapped to a region of ~100 kb,
in the last 200-kb intron of the gene.
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The Human DIA cDNAs

The DRES25 clone and cDNA fragments that ex-
tended toward the 5’ end of the gene were used to isolate
full-length ¢cDNA. Overlapping clones were identified
from different libraries and were sequenced from both
strands. Most of the cDNAs were identical, and the es-
tablished consensus sequence was 4,040 bp (European
Molecular Biology Laboratory [EMBL] accession nos.
Y15908 and Y15909). It contained an ATG, at position
351, preceded by in-frame stop codons. An ORF of
3,306 bp encoded a 1,101-amino acid protein that was
highly similar to the Drosophila dia protein (fig. 3).

In most clones, a stop codon was localized at position
3653 and was followed by a 3' UTR. A poly A tail was
present in two of the cDNAs isolated, but no canonical
consensus sequence for polyadenylation was observed.
The 6-kb sequence of cosmid DNA downstream of the
DRES25 3’ end identified five canonical consensus se-
quences for polyadenylation. Results of RT-PCR and 3’
rapid amplification of cDNA ends experiments (data not
shown), together with the finding of two ESTs, in
GenBank, that contain a poly A tail (Image Consortium
clone identification nos. 133877 and 148120), con-
firmed that two of the sites were used. The first site,
which was 1.3 kb from the stop codon, would produce
a transcript of 4.9 kb, whereas the second site, which
was 5.7 kb downstream, would produce a transcript of
9.3 kb.

Two clones from a testis library contained a 3’ end
that diverged from the consensus sequence at nt 3590.
The divergent sequence encoded a 48-nt ORF and a
short 3’ UTR. A probe that was specific for the alter-
native sequence hybridized to YACs 796E9 and 637GS;
to PACs dJ317K17, dJ223L17, dJ57]7, and dJ117F12;
and to two X chromosome-specific cosmids, 53B16 and
24J10 (fig. 1b). This result mapped the alternative se-
quence between the two last exons of the gene, proximal
to the breakpoint in the family of patient BC. Results
of sequencing cosmids 53B16 and 24J10 from cDNA
internal primers demonstrated the presence of splice
junctions and suggested that the alternative sequence
was an alternative last exon. The two exons indicated
were exon 156 and exon 12C (fig. 1b). The 5’ end of
the DIA cDNA (1-201 bp) was mapped to the restriction
map of YAC 933D12 (data not shown); the human DIA
gene was determined to be ~1 Mb.

The Human DIA Proteins

The alignment of the human DIA and Drosophila dia
proteins indicates that they are highly similar (fig. 3).
Humans and Drosophila have 39.3% identical and
66.2% conserved residues, along the entire length of
1,101 and 1,096 amino acids, respectively. Of the two
alternative last exons of the human gene, only exon 156
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encodes 21 amino acids that are significantly similar to
those of the fruit fly protein; exon 12C encodes a se-
quence that is quite different from that of Drosophila.

The human DIA possesses the two conserved domains
FH1 and FH2 (formin homology 1 and 2, boxed in fig.
3) as well as characteristics of the FH1/FH2 protein fam-
ily that have been described in a large number of distant
organisms (Maas et al 1990; Woychik et al. 1990; Em-
mons et al. 19935; Petersen et al. 1995; Changetal. 1997;
Evangelista et al. 1997; Harris et al. 1997; Imamura et
al. 1997). Other conserved features include the distance
between the FH1 and FH2 domains and the presence of
two coiled-coil domains (boxed in fig. 3) that flank the
FH1 and the FH2 domains.

Computational analysis with PSORT predicted a nu-
clear localization signal (NLS) near the C-terminal of the
protein. An NLS is also found, in different localizations,
in formins (Chan and Leder 1996).

Alternative Forms of the Transcript and Expression
Analysis

The DRES25 was hybridized to northern blots that
contained poly A* RNA from various human adult and
fetal tissues (fig. 4). Three major bands, of ~9.3, ~4.9,
and ~4.4 kb (forms a—c), were visible and were ubiq-
uitously expressed. In adult testis, a specific fourth band,
of 2.7 kb, was also present (form d). The two major
bands appeared to be slightly (~3—4 times) more abun-
dant in testis, ovary, and small intestine (compared with
mRNA quantity normalized by S-actin control hybrid-
ization). Forms a and b were absent in spleen and leu-
kocytes and were very rare in thymus and colon.

To determine whether the four bands corresponded to
different 3’ ends, probes that were specific for exons 12C
and 156 were hybridized to the northern blots: bands a
and b contained exon 156, and bands ¢ and d contained
exon 12C. Thus, the four different transcripts of the DIA
gene differed in their 3’ end. The 2.7-kb testis-specific
transcript contained at least part of the DRES2S se-
quences and the 12C exon, but it was too small to encode
the whole ORE It was not characterized further.

To verify that transcripts a and b were interrupted by
the BC breakpoint, we looked for specific transcripts, in
total RNA of lymphoblastoid cell lines of patient BC,
by RT-PCR amplification, from primers in the coding
region and in exon 12C or exon 156 (fig. 5a). Only
primers from exon 12C could synthesize cDNA from
lymphoblasts of patient BC (fig. 5b); no product that
was specific for exon 156 was detected (fig. 56 and ¢).

Lymphoblastoid cell lines, from POF patients 7B, FA,
and WD, that carried X-autosome translocations with
breakpoints centromeric to that in patient BC (Sala et
al. 1997) were analyzed, by RT-PCR, in the same ex-
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Figure 3
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Alignment of human DIA and Drosophila dia proteins, as determined by CLUSTALV. The FH1 (amino acids 549-623) and the
FH2 (amino acids 766—-907) domains are boxed with continuous lines. The coiled-coil domains are boxed with broken lines. The two C-termini
of the human DIA protein (exons 156 and 12C) are underlined. Identical residues are indicated by asterisks, and conserved residues are indicated
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Figure 4 Northern blot analysis of the DIA 3’ end. Two micrograms of poly A* RNA from various human adult and fetal tissues were

hybridized with (1) the DRES25 clone insert, (2) a probe specific for the 156 last exon, or (3) a probe specific for the 12C last exon. Letters
(“a—d”) on the left indicate the four DIA transcripts. Molecular size markers are on the right. Control hybridization was performed with human

B-actin (Clontech).

periment. The DIA transcript was synthesized in all three
patients (fig. 5c).

The DIA Gene Is Expressed in Developing Ovaries

The human DIA gene is ubiquitously expressed, in
rather low amounts, in human adult and fetal tissues.
To determine whether it is also expressed early in em-
bryogenesis, during gonad development, we isolated and
sequenced a mouse-cDNA fragment that corresponds to
the distal portion of the human gene (amino acids
752-1101). The mouse-cDNA fragment (EMBL acces-
sion no. Y15910) encodes 349 amino acids, 85.6% of
which are identical to those in the corresponding region
of the human protein. Primers were designed to amplify,
by RT-PCR, a 396-bp fragment from RNA of various
mouse tissues at various stages of development. RT-PCR
was performed with liver, heart, kidney, ovary, and testis
tissues dissected from mouse at developmental stages
E16, P6, and P16. The mouse Dia gene was expressed
in both ovary and testis, as well as in all other tissues
from the E16 stage (fig. 6).

Discussion

We have characterized a human homologue of the
Drosophila dia gene; mutated alleles of this gene affect
spermatogenesis and oogenesis (Castrillon and Wasser-
man 1994). We propose that the human DIA gene de-
scribed in this article is involved in oogenesis and that
it is one of several genetic loci that are responsible for
POF. DIA was mapped to the POF critical region (Ther-
man et al. 1990) and was disrupted by the breakpoint
of a balanced X;12 translocation that was identified in
the family of patient BC (Philippe et al. 1993; Sala et

al. 1997), in which the same chromosomal rearrange-
ment cosegregated with POFE. The breakpoint was
mapped to the last intron of the gene. As a consequence
of the translocation, the DIA gene on the derivative X
chromosome could be fused to sequences from chro-
mosome 12, and an altered protein might be synthesized.
Alternatively, in the absence of the last coding exon and
of the 3' UTR, the truncated transcripts might be both
unstable and likely to degrade soon after transcription.
In either case, a very long 3’ UTR, common to a and b
mRNAs, would be missing. The 3' UTR was AT-rich and
contained  several  motifs (AUUU[UJA  and
AUUUUJ[UJAUU) that have been implicated, because of
their effects on poly A tail length and mRNA stability,
in translational control of mRNAs (Vassalli and Stutz
199S5). This control mechanism is especially relevant in
oocytes and early embryos, in which many mRNAs can
remain untranslated for long periods of time and can be
recruited for translation at specific developmental stages.
DIA expression in ovaries may therefore be subjected to
such posttranscriptional control, and the lack of the reg-
ulatory motif may alter the pattern of events that lead
to oocyte and ovary maturation. Of the remaining DIA
transcripts, the 2.7-kb transcript d is testis-specific, and
the 4.4-kb transcript ¢ is the more ubiquitous. The latter
transcript may have different properties because of the
presence of the alternative 3’ coding exon and 3’ UTR.

DIA is the human homologue of the Drosophila dia
gene; along the whole sequence, >39% of amino acids
are identical, and >66 % are conserved. DIA is a member
of the FH1/FH2 family of proteins. The Drosophila
genes dia (Castrillon and Wasserman 1994) and cap-
puccino (Emmons et al. 1995); the mouse formins (Woy-
chik et al. 1990; Maas et al.); the yeast genes fus1 (Pe-
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Figure 5 RT-PCR analysis of the DIA transcripts. a, Schematic

representation of the 3’ end of the gene and of the two alternative last
exons. Positions of primers (table 1) are indicated by arrows. b, RT-
PCR products synthesized from RNA of the human tissues indicated
and from lymphoblastoid cell lines of POF patients BC and 7B. PCR
was performed with primers D-f2 and 156-r or 12C-r. ¢, RT-PCR
products from RNA of lymphoblastoid cell lines, from normal female
(XX), from normal male (XY), and from POF patients 7B, BC, FA,
and WD, amplified from primers D-f1 and 156-r. The RT reactions
were carried out with (+) or without (—) reverse transcriptase. ¢, PCR
reactions without DNA template. RT-PCR products were fractionated
on 3% agarose gels and stained with ethidium bromide. Molecular
weights are indicated on the right.

tersen et al. 1995), cdc12 (Chang et al. 1997), Bnilp
(Evangelista et al. 1997), and Bnrlp (Imamura et al.
1997); and the Aspergillus nidulans gene sepA (Harris
et al. 1997) have been shown to participate in the es-
tablishment of cell polarity and cytokinesis. They have
been implicated in reorganization of the actin cytoske-
leton through interaction with profilin (Inamura et al.
1997) and, possibly, with other actin-binding proteins.
Accordingly, Bnilp, Bnrlp, and p140mDia (a mouse
homologue of DIA that is different from the one we
have isolated) have been shown to be targets for the
small G protein Rho (Kohno et al. 1996; Inamura et al.
1997; Watanabe et al. 1997), which has been localized
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Figure 6 RT-PCR products from total RNA extracted from the
indicated mouse tissues at developmental stages E16, P6, and P16.
PCR of mouse Dia cDNA was from primers mD-1 and mD-4; control
mouse Hprt cDNA was amplified from primers Hprt-f and Hprt-r.
The RT reactions were carried out with (+) or without (—) reverse
transcriptase. ¢, PCR reactions without DNA template. The sequences
of the primers are displayed in table 1. The amplification products
were fractionated on 3% agarose gels and stained with ethidium bro-
mide. Molecular weights are indicated on the right.

to the cytoskeleton and is also involved in actin-mediated
morphogenetic processes (Takai et al. 1995).

The dia locus was identified, in Drosophila, as a result
of a screen for male-sterility mutations, and it was shown
to be required for cytokinesis (Castrillon and Wasserman
1994). Like human DIA, Drosophila dia is ubiquitously
expressed. Alterations in cytokinesis that are associated
with mutated dia alleles have been described in several
different tissues, but the main phenotype produces ste-
rility. Null mutations result in early pupal lethality; this
finding is consistent with the suggestion that dia is an
essential mitotic gene. Our results strongly indicate that
human DIA has conserved the Drosophila dia gene’s
role in cell divisions that lead to gonad development.
Accordingly, DIA transcripts are present in ovary and
testis at early stages of development (E16) as well as at
stages during which the ovarian follicles undergo dif-
ferentiation (P6-P16).

Mutation analysis of a large number of patients may
demonstrate that DIA has a definite role in ovary de-
velopment. Such analyses may also determine the fre-
quency of mutations in the DIA gene, among POF pa-
tients. Like Drosophila dia, human DIA is expressed in
the testis, where it presents a common and a testis-spe-
cific form. Mutation analysis of sterile human males
could show whether DIA is responsible for sterility in
humans, just as dia is responsible for sterility in
Drosophila.

While this article was undergoing revision, Lynch et
al. (1997) reported a second homologue of the Dro-
sophila dia gene, localized to chromosome 5q31, that
was responsible for DFNA1, an autosomal dominant
sensorineural progressive hearing loss. They also sug-
gested that the Xq22-linked gene was a candidate for
the nonsyndromic X-linked deafness, DFN2, mapped to
Xq22. However, in the family of patient BC, the two
females affected with POF were not reported to have
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hearing problems. Since the chromosome § DIA ho-
mologue did not affect fertility (Lynch et al. 1997), it
appears that the various members of the DIA family that
have evolved from an ancestral unique dia gene have
maintained a ubiquitous role, but they have acquired
specific functions in highly specialized cell types, such as
the follicular cells of the ovary and the hair cells of the
inner ear.

POF is a very heterogeneous disorder, but the molec-
ular mapping of breakpoints of X-autosome transloca-
tions suggests that POF may be ascribed to disruption
of a limited number of Xq21 genes involved in ovary
development (Sala et al. 1997). Our previous work could
not exclude the possibility that mispairing at meiosis,
due to chromosome rearrangement, may cause POF;
however, we tentatively excluded long-range position ef-
fects, since genes in the region apparently were not af-
fected by the presence of the breakpoints. The best ex-
ample was the choroideremia (CHM) gene: disruption
of CHM in females was responsible for POF and CHM,
but POF without CHM was reported in patients who
carry breakpoints outside the CHM gene. We also pro-
posed that gene-dosage effects were not a likely expla-
nation for POF that is associated with balanced trans-
locations in Xq21, since large deletions that remove the
whole critical region for POF, in Xq21, apparently were
not associated with ovarian failure (Merry et al. 1989).
The identification of DIA further supports our hypo-
thesis that several Xq21 genes are involved in POE
Moreover, since DIA expression was not affected by
breakpoints, in Xq21, outside the DIA gene itself and
since DIA was expressed only by the active X chro-
mosome (fig. 56 and ¢; authors’ unpublished data), our
results suggest that other loci or mechanisms may ac-
count for the remaining cases of the disorder.
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